首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   8篇
化学工业   4篇
轻工业   4篇
一般工业技术   17篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   8篇
  2018年   6篇
  2010年   1篇
排序方式: 共有25条查询结果,搜索用时 156 毫秒
1.
Carbon fibers (CFs) are a promising candidate as electrode materials for flexible supercapacitors given its light weight and moderate cost. In this study, the lignin used was partially separated from kraft bamboo pulping black liquor and the higher molecular weight fraction, unavoidably contains a small amount of silicon compounds, so named silicon-contained lignin. Novel CFs were prepared using commercial polyacrylonitrile (PAN) and the lignin by electrospinning and further carbonization. Even in the presence of silicon compounds, the fibrous morphology of precursor fibers was significantly good, and the CFs with uniform fiber diameter and high specific surface area up to 182 m2/g were obtained with an increase in silicon-contained lignin. The CFs fabricated from silicon-contained lignin and commercial PAN had higher specific capacitance (22.20 mF/cm2 at 10 mA/cm2) and superb cycling stability (94.21%) than that from silicon-free lignin or pure PAN separately.  相似文献   
2.
Cellulose nanofiber (CNF) was isolated from Okara using deep eutectic solvent (DES) with high-speed stirring. The composite hydrogels obtained by using different proportions of CNF and sodium alginate (SA) had different properties. The CNF/SA composite hydrogels were analyzed using Fourier transform infrared spectroscopy and scanning electron microscopy and tested for compression properties, rheological properties, water content, and swelling degree. Physical crosslinking between SA and Ca2+, and different degrees of hydrogen bond formation between SA and CNF were observed. The CNF/SA composite hydrogel have great potential as reinforcements in eco-friendly composite hydrogels for diverse applications.  相似文献   
3.
A new method to enhance the compressive strength of corrugated cartons is proposed in this study. The work aims to carry out compression tests on the corrugated carton to analyze the deformation and compressive capacity of the carton under the indentation condition of different shapes. First, compression tests are carried out on nonindentation cartons, one-line indentation cartons, unclosed rhombus indentation cartons, rhombus indentation cartons, and cross-indentation cartons to record their maximum compressive force. Second, by comparing the deformation of different cartons, it is found that rhombus indentation and cross-indentation have the greatest influence on the compressive strength of cartons. Rhombus indentation will enhance the compressive strength of the carton, while cross-indentation will reduce it. Third, ANSYS Workbench is used to analyze the buckling of cartons, and the maximum compressive force of nonindentation cartons and rhombus indentation cartons is obtained. Finally, through the comparison of the finite element method and experiments, it is concluded that rhombus indentation can improve the compressive strength of cartons, which is of great significance to the industrial production of cartons.  相似文献   
4.
巩桂芬  刘雨杉 《包装工程》2019,40(13):172-176
目的 在不同形状的压痕条件下,对瓦楞纸箱进行抗压试验,研究纸箱的变形情况和抗压能力。方法 首先设计无压痕纸箱、一字型压痕箱、八字型压痕箱以及菱形压痕箱;其次将各种压痕形状下的纸箱,利用纸箱抗压试验机进行空箱抗压实验,记录各自的最大压溃力;最后对实验数据进行分析,明确抗压强度与压痕形状的关系。结果 不同压痕形状对瓦楞纸箱的抗压强度有不同程度的影响,其中菱形影响最大。菱形压痕通过阻碍纸箱变形趋势可提高瓦楞纸箱的抗压强度。结论 在瓦楞纸箱侧板上通过施加阻碍纸箱工字型变形的压痕(如菱形压痕),可以增加瓦楞纸箱的抗压强度,对瓦楞纸箱的生产设计具有参考意义。  相似文献   
5.
目的 研究柱形空气垫静态压缩缓冲性能,将理论几何压缩模型进行试验验证,证明可行性。 方法 根据柱形空气垫受压变形特征,推导出几何压缩模型理论公式,对不同宽度、不同充气压强的柱形空气垫进行静态压缩试验,用拓色法计算理论面积,将试验曲线与理论曲线进行对比。结果 随着压缩位移的增加,接触面积曲线的理论值与试验值呈线性关系,在宽度相同的情况下,充气压强的增大导致接触面积曲线的理论值与试验值吻合程度下降;相同宽度、不同压强的柱形空气垫载荷位移曲线很接近,显示出规格才是影响柱形空气垫缓冲性能的主要因素。结论 所提出的柱形空气垫静态压缩几何模型可行。  相似文献   
6.
采用简单易行的一锅溶剂热法原位合成CuFe2O4/纳米纤维素(CuFe2O4/CNC)磁性复合材料,并研究CuFe2O4/CMC磁性复合材料催化剂在NaBH4作用下催化还原4-硝基酚(4-NP)性能。结果表明:所制备的CuFe2O4/CNC磁性复合材料为单一尖晶石结构,具有超顺磁性,纳米颗粒尺寸约为10 nm,其饱和磁化强度为33.15 emu·g-1。与CuFe2O4纳米颗粒相比,CuFe2O4/CNC磁性复合材料的比表面积提高到89.9 m2·g-1(CuFe2O4纳米颗粒的比表面积为53.9 m2·g-1)。CNC有助于改善CuFe2O4的单分散性,且对4-NP的吸附作用能加快反应的传质速率。将CuFe2O4/CNC磁性复合材料用于催化还原4-NP,反应符合一级动力学特征;当CNC的添加量为0.2 g时,可以将4-NP(100 μL,0.005 mol·L-1)溶液在25 s催化还原完全,表现出优异的反应活性。催化剂循环使用5次后,对4-NP的转化率仍能保持90%以上。   相似文献   
7.
郭凌华  王晶  孙栗媛  温蕾  党玲玉 《包装工程》2018,39(15):210-215
目的从相对反差最大时密度最佳的角度出发,结合网点扩大,构建基于回归算法的数学模型,确定最佳的实地密度,从而提高印刷品的质量。方法获取过版样张,根据测量的实地密度、相对反差和网点扩大值作出三维坐标图,并基于回归算法建立相对反差K、网点扩大与实地密度函数关系的数学模型;利用该模型找到相对反差最大时,网点扩大和实地密度的参数匹配算法;网点扩大在国标范围(15%~20%)内,最终以方差最小原则确定最佳的实地密度。结果基于回归算法找到了当相对反差最大时实地密度和网点扩大的参数匹配符合函数y=ax+b,确定了C,M,Y,BK油墨的最佳实地密度分别为1.551,1.612,0.975,1.828。结论基于回归算法确定最佳实地密度的方法能够保证相对反差良好,网点扩大适宜,提高了印刷品的清晰度和鲜艳程度,对印刷的质量控制具有一定的指导意义。  相似文献   
8.
目的解决目前半色调加网的信息隐藏技术存在的隐藏效果不佳、易仿制等问题。方法基于最小阈值矩阵加网原理,开发一种矩阵轮换加网算法,生成具有防伪意义的特殊形状网点,应用于半色调信息隐藏技术中。结果该方法中特殊形状网点的生成,克服了传统网点进行信息隐藏时易出现的"断点"缺陷,提高了隐藏视觉不可见度,且网点形状根据矩阵设计的不同而变化,不易仿制,提高了防伪系数。结论矩阵轮换加网生成特殊形状网点,对于半色调加网的信息隐藏技术在实际生产中应用具有较好的指导作用。  相似文献   
9.
郭凌华  孙栗媛 《包装工程》2018,39(13):216-221
目的从网点墨量与实地墨量不同的角度出发,构建基于半色调实地三刺激值的纽介堡方程修正模型,从而提高纽介堡方程的计算精度。方法以符合G7认证的印刷标准文件为研究对象,从网点墨量与实地墨量不同的角度出发,通过求解半色调实地三刺激值,构建基于半色调实地三刺激值的纽介堡方程修正模型,利用色差法对该修正模型进行精度验证。结果验证结果表明,修正模型色差精度最大可以提高2.2 NBS,平均色差精度可以提高1.0 NBS。结论基于半色调实地三刺激值的纽介堡方程修正模型能够有效提高方程精度,研究结果对于印刷分色具有重要意义。  相似文献   
10.
Two-step growth of ZnO nanowires (NWs) on carbon fiber (CF) surface via hydrothermal synthesis was studied and their application in the preparation of paper-based friction materials by wet-forming process was also investigated. SEM and EDS results showed a dense and uniform ZnO NWs layer with vertical alignment was well established on surface of CFs. UV–vis spectra and XRD characterization further confirmed the formation of ZnO NWs on CFs surface. In comparison with control sample (paper-based friction material containing pristine CFs), the modified sample (paper-based friction material containing modified CFs) exhibited higher and more stable dynamic friction coefficient and greater wear resistance. It was concluded that the CFs@ZnO NWs had excellent tribological properties and was highly promising for wet paper-based friction material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号